Forge enables companies to leverage design and engineering data to develop custom software applications and connected workflows for manufacturing, media/entertainment, architecture, and engineering.
simulationHub Web Services
simulationHub Web Service ( SWS) has become the first microservices based cloud platform to build thermal, fluid and hyper-localized weather applications. SWS provides more than 200 REST APIs.
Amazon Web Services
Amazon Web Services (AWS) is a secure cloud services platform, offering computing power, database storage, content delivery and other functionality to help businesses scale, grow and build cloud applications.
GE Predix
Predix platform is a comprehensive and secure application platform to run, scale, and extend digital industrial solutions. The platform delivers shared capabilities that industrial applications is required.
Our Approach
It's the guiding structure that allows us to ensure consistent quality, seamless execution, and collaborative relationships between our people and our customers.
Our Core Expertise
We have grown up with 3D technologies. We are building the 3D application from predicting missiles trajectories to designing a kitchen for the homeowner.
Ask about our products, services, or latest research. Let's discuss how we can help you solve your problem.
CFD analysis of a heat collector element in a solar parabolic trough collector
International Conference on Applications of Renewable and Sustainable Energy for Industry and Society, Hyderabad, India
November 2010
AUTHORS
Sam Mathew, Ganesh Visavale, Vijay Mali
Abstract
A numerical study of the performance of a solar Parabolic Trough Collector (PTC) has been done focusing on its receiver. The receiver consisting of a glass-shield enclosing a Heat Collector Element (HCE) with vacuum in the annular space has been subjected to seasonal and diurnal variations of solar radiation along with the concentrated heat flux reflected from the parabolic trough mirror for conditions at Pune, India. The HCE is modeled as a metallic tube with thermic fluid Therminol-VP1 TM flowing through it at low Reynolds number under thermally developing conditions with highly temperature dependent properties. The highly asymmetric nature of the physics for thermal and turbulent flow conditions make it imperative to consider a complete three dimensional domain for the conjugate heat transfer analysis. The conduction, convection and radiation heat transfer effects have been modeled with radiation restricted within the annular region using the S2S radiation model. The solar fluxes have been modeled using the Solar Load Model also accounting for the shadowing effects for semi-transparent and opaque surfaces. The pressure drop in the thermic fluid flow is comparatively uniform throughout the day during winter conditions while the fluid gets heated up 4 times more at noon compared to morning. The summer conditions exhibit a 2.5 times higher pressure drop at noon compared to the morning conditions. The comprehensive analysis is performed using the finite volume based CFD code of ANSYS FLUENT 12.1 and verifies the huge potential that PTC holds for high temperature applications in concentrated solar power plants.
Want to know more about this work ?
Ask about this publication or similar work. Get in touch with the paper author.