
Boolean operations for faceted solids

Ashish L. Shete Sandip N. Jadhav

Student DACAD Program Director (CAD)

ashish_shete85@rediffmail.com sandip@cctech.co.in

Centre for Computational Technologies (CCTech), Pune.

Abstract:

Industrial CAD designer at various stages
of product design come across faceted
definition of solids due to CAD import from
STL, DXF and VRML files. Most of the
times the data provided by the clients or
third party is sufficient for the referencing
purposes. This data cannot be edited or
processed to perform further geometric
operations essential for downward
application. This is main hindering block in
main stream CAD modeling software. We
are addressing this problem through
faceted Boolean operations for such
specific cases.

In this paper we present an algorithm to
perform interactive Boolean operations on
free-from faceted solids. We are
developing fast surface-surface
intersection algorithm for triangulated
surfaces. In next stage different
combinations of possible resultant solids
produce from intersection operations would
be displayed to user for desire Boolean
selection. This enables us to add, subtract
and intersect complex solids at interactive
rates.

 The result of an boolean operation is a
set of triangles that determines the
boundary of the intersection between two
meshes. These triangles could be not one
of the original ones. To calculate this new
ones, this module search pairs of triangles
that intersect and lie on the boundary. The
intersection determines how to subdivide
these two triangles to obtains the needed
ones.

Keywords:

Boolean, solid modeling, faceted solids,
triangulated surface, reverse engineering.

1. Introduction
Triangulated Faceted geometries are
surface patches which are defined by
points and triangles. These geometries are
formed by tessellation of well defined
surfaces like NURBS or B Spline surfaces.
These are mainly used for visualization and
rendering purposes. Due to there
tessellated nature it is hard to find out there
intersections. Also it is difficult to determine
whether the point in space is inside the
volume bounded by these surfaces, on the
surfaces or outside the bounding volume.
The above processes are intensively used
for Boolean operations performed on solid
bodies. Fast intersection and in/out
searches are required in order to perform
various solid parts generations.

Present work aims at developing a CAD
functionality which can generate results by
performing Boolean operations on faceted
geometries.

2. Boolean Operations
The basic Boolean operations are
analogous to mathematical set operations:

mailto:ashish_shete85@rediffmail.com
mailto:Sandip.cctech@gmail.com

 Figure 2-1 Basic Boolean operations

2.1. Global Booleans

A global Boolean involves comparing all
face pairs from the target and tool bodies.

Global Booleans are performed which
requires one target body, one or more tool
bodies and an options structure. If more
than one tool body is supplied, the union of
overlapping tools is computed first and
then the Boolean between the target and
the tools is performed.

2.2. Local Booleans

A local Boolean involves comparing
selected face pairs in the target and tool
bodies. This form of Boolean operation is
quicker than a global Boolean but does not
guarantee topological consistency on the
resulting bodies.

2.3. Boundary regions

In order to perform Boolean operations,
edges are imprinted on the target and tool
to denote the intersecting parts of the two
bodies. These imprinted edges divide the
boundaries of the bodies into boundary
regions.

Suppose the bodies shown are used to
perform a global and local Boolean
respectively.

Figure 2.3.1 Bodies used in a simple union

For global Booleans, all the boundary
regions of the tool bodies lie either
completely inside or completely outside of
the target body, as shown in Fig.

Fig. Boundary regions for global Booleans

Figure 2.3.2 Regions after the boolean

For local Booleans, because not all faces
of both bodies are used to compute the
imprinted edges, boundary regions of the
tool body are classified as inside if they are
locally inside the target body near a loop of
imprinted edges, and are classified as
outside if they are locally outside near the
loop of imprinted edges, as shown in Fig.
Options are provided to select which
regions are to be excluded or included in a
local Boolean.

Fig. 2.3.3 Boundary regions for local
Booleans

3. Imprinting

In our algorithm imprinting takes place by
method explained below:

 The input faceted geometries are the set
of triangles. If 1st surface has M number of
triangles and second surface has N
triangles, each triangle in first set will try to
find whether there is any intersection

between it and the second surface. This
could be found out by considering each
triangle of 1st surface as a set of 3
segments. These segments are actually
sides of the 1st triangle. These sides will be
sent as rays to the 2nd surface and the
intersecting points are calculated. Different
checks are applied to see the exact
position of the intersecting point on the
second surface. In this way M X N
iterations are performed.

3.1. Ray Triangle intersection algorithm:

A plane, in its vector form, is specified by a
based point B and its normal vector N. For
an arbitrary point, or position vector, X on
the plane, the direction vector from the
base point B to X, X-B, must be
perpendicular to the normal vector N.
Therefore, we have (X-B).N must be zero.
From (X-B).N=0, we have the equation of a
plane specified with a base point and its
normal vector:

X.N- B.N = 0

Given the vector notation of lines and
planes, it is very easy to compute the
intersection point of a line and a plane. Let
the given line be A+td. Let the plane be
defined with a base point B and its normal
vector n. Then, this plane has equation
X.n=B.n. If the line intersects the plane,
there must be a value of t such that the

corresponding point lies on the plane. That
is, there must be a t such that the point
corresponding to this t would satisfy the
plane equation. Since a point on the line is
A+td, plugging A+td into the plane equation
yields

(A+td).N - B.N = 0

Rearranging the terms and solving for t
yields

t = (B-A).N / d.N

Therefore, plugging this t into the line
equation yields the intersection point.

In the above, if d.N is zero, t cannot be
solved and consequently no intersection
point exists. The meaning of d.N = 0 is that
d and n are perpendicular to each other.
Since n is the normal vector of a plane and
d is perpendicular to n, d must be parallel
to the plane. If the line is parallel to the
plane, no intersection point exists.

In some cases it may happen that the two
triangles are not intersecting at all, here
parameter t determines whether to
consider the point of intersection or not.
Point in polygon search methods are used
to determine whether the point is in inside
or outside of the concerned triangles.

After performing the intersection, points on
surfaces are displayed which form actual
boundaries, for face, which separates the
surfaces from each other. The faces of the
target and the tool bodies are intersected
with each other to produce new edges
where they meet. These edges divide the
faces of each body into facesets which are
either inside, outside, or on the boundary
of, the other bodies.

4. Gluing

The resulting sets of faces are joined
together into a single intermediate body.
Triangulation is generated on these
boundary points to redefine the separated
facesets.

5. Selection

The parts of the model which are to be kept
or rejected are selected, according to the
type of Boolean being performed and the
options supplied, using information gained
in the earlier phases. Selection could be
done by selecting a point, face, or an edge
of triangle for a particular region.

We are planning to save these operated
parts in separate STL files.

6. Implementation Details:

The code has been written using ANSI C[6]
on Linux platform. CAD translator
developed for VRML read all important
geometric entities. Non triangulated entities
are converted to the triangulated surfaces.

 For implementation of imprinting
algorithm, geometric tool library is created
to support the intersection algorithm. It
consists of vector algebraic operations
such as vector cross product, subtraction,
dot product, vector normal and unit vector.
Code uses the parametric as well as
implicit form of equations for various
geometric entities like segments, planes,
curves, triangles etc. To find the point of
intersection and gluing operations are time
consuming and tedious. Therefore we
make use of spatial search method to
increase to increase the speed of ray
tracing algorithm in surface intersection.
For results display purposes GNUPlot, Qt,
OpenGL is used.

Spatial Searching Framework
 Sequential searching of geometry is
not the fastest method. Instead, division of
the whole geometry domain into a grid or

voxels helps search faster as the search
gets 'localized'. Voxel method of searching
has its own limitations when it comes to
non-uniform distribution of geometry
objects in a domain. The quadtree/octree
approach of domain division comes in
handy to overcome this limitation of voxels
as the division of the domain (and hence
the problem of searching) adapts itself to
local complexity of the problem.

Principle:
The grid approach to searching sub-divides
the domain into rows and columns of a
specified size (can be different in x, y and z
directions) and marks individual voxels
(cells) thus formed with the geometric
objects that lie within (this local domain).
The original problem, therefore, gets sub-
divided into smaller problems equal in
number to the number of voxels formed.
When a search query is fired, the
concerned voxel (the concerned sub-
problem) is first identified which, if
searched through, will surely obtain a
solution. Only those geometric objects that
have been marked earlier as lying in this
voxel are searched and the solution
obtained. Thus, the problem of searching
all geometric objects within the entire
domain gets reduced to searching only
those objects that lie within the concerned
local sub-domain – which is obviously
faster.

 However, this search may not be as
fast if the distribution of objects in the
original domain is non-uniform. This
happens since the number of objects lying
within a voxel (cell occupancy) varies
across the grid with some voxels having
very high occupancy and others having
very low (if the query requires searching a
voxel with high occupancy, the search is
not sufficiently fast).

 The quadtree approach starts out
with dividing the domain into four (octree
approach divides into eight in 3D) sub-

domains. Only that sub-domain is further
sub-divided into four, which has higher-
than-desired cell occupancy, leaving out
the subdivision of those sub-domains that
need not be redundantly sub-divided
further as they already have optimum
occupancy. With each subdivision the
quadtree/octree is said to have penetrated
a level deeper. Very deep trees can render
the search slower. Therefore, each
subdivision decision takes into account not
only the desired cell occupancy, but also
the tree depth and strikes a balance
between the two factors. Thus, more
uniform cell occupancy is achieved
although the distribution of geometry
objects across the full domain may not be
uniform. The quadtree division, when
complete, captures the complexity of the
problem in a way.

References:
[1] O’Rourke, J., “Computational

Geometry in C”, Cambridge University
Press,2nd Ed 2001.

[2] Farin, G.E., “Curves and Surfaces in
CAGD”, Academic Press Inc., 4th
Ed.,199

[3] Hamies, R., Aftosmis, M., “On
Generation High Quality Water-Tight
Triangulation directly fro CAD”,
“Numerical Grid Generation in
Computational Field Simulations”, The
International Society of Grid
Generation, 2002, pp. 27-46.

[4] Ritche, Kernigham, “The C
Programming Language”, Princeton-
Hall Inc., 2nd Ed, 2000.

[5] Schneider, J.P., Eberly, H.D.,
“Geometric Tools for Computer
Graphic”, Morgan Kauffmann, 2003.

[6] Roger, Adams, “Mathematical
Computation for Computer Graphics”,
2nd Ed., 2001.

[7] Mezentsev, A., Woehler, T., “Methods
and Algorithm of Automated CAD
Repair for Incremental Surface
Meshing”, In Proceedings, 10th
International Meshing Roundtable,

Sandia National Laboraories, 2001,
pp.353 – 362.

[8] 3D Systems,Inc., CA,
Stereolithography Interface

 Specification (STL),
http://www.3dsystems.com
[9] AutoCAD Reference Manual,

AutoDesk, Inc., Data Exchange file
format (DXF),
http://www.autodesk.com.

[10] IITZeus Preprocessor,
http://www.aero.iitb.ac.in/~iitzeus

